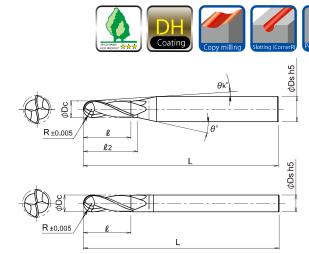

DIJET PRODUCT NEWS NEW **Hard-One Series** PN-E-009 DH Coated Solid carbide end mill series for high hardened die steel up to 70HRC. **SERIES EXPANSION** ■Solid carbide ball nose end mill ■Size range: ф1-ф12mm dia. Solid carbide radius end mill Size range: φ2-φ12mm dia. You

DIJET GmbH

www.dijet.de

Hard-One Ball

SFSB type


•2 flutes / Helix angle 30°

■Tolerance (mm)

R of ball nose	Tolerance of R
R0.5∼R6	±0.005

Fig.2 (ϕ Dc= ϕ Ds)

					Di	mensions	(mm)				
Cat. No.	Stock	Grade	R	φ Dc	Q	Q2	L	φDs	θ	θk	Fig.
SFSB2010	•		0.5	1	1	1.5	40	4	12°	10.49°	1
SFSB2010-S6	•		0.5	1	1	1.5	40	6	12°	11.04°	1
SFSB2020	•		1	2	2	2.5	40	4	10°	7.86°	1
SFSB2020-S6	•		1	2	2	2.5	40	6	10°	8.8°	1
SFSB2030	•		1.5	3	3	4	40	4	10°	5.29°	1
SFSB2030-S6	•		1.5	3	3	4	40	6	10°	7.69°	1
SFSB2040	•	DH110	2	4	4	-	40	4	-	-	2
SFSB2040-S6	•		2	4	4	5	40	6	8°	5.59°	1
SFSB2050	•		2.5	5	5	6	50	6	5°	2.79°	1
SFSB2060	•		3	6	6	-	50	6	-	-	2
SFSB2080	•		4	8	8	_	60	8	-	-	2
SFSB2100	•		5	10	10	-	60	10	-	-	2
SFSB2120	•		6	12	12	-	60	12	-	-	2

^{●:}Standard stock items

Hard-One Ball

Recommended cutting conditions for SFSB type

■for roughing & semi-finishing

Work m	nateria l s	Carboi (1.0540 ~25		Hardened (1.2344, 1.2379 ∼45		Hardened (1.2344, 42~5	1.2379)	
	Type of machining ap≦0.1Dc ae≤0.3Dc			ap≦0 ae≤0	 .1Dc	ap≦0.1Dc (MAX 0.5mm) ae≤0.3Dc		
T	L attack	ae⊇0.	300			ae≦0.3DC		
	l dia.	Spind l e speed	Cutting speed	Spind l e speed	Cutting speed	Spind l e speed	Cutting speed	
R (mm)	φDc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	
0.5	1	31,800	1,590	31,800	1,590	30,200	1,210	
1	2	23,900	1,910	23,900	1,910	22,300	1,560	
1.5	3	19,100	2,480	19,100	2,290	18,000	1,800	
2	4	14,300	2,290	14,300	2,150	13,500	1,620	
2.5	5	11,500	2,190	11,500	2,070	10,800	1,620	
3	6	9,500	2,090	9,500	1,900	9,000	1,620	
4	8	7,200	1,940	7,200	1,800	6,800	1,500	
5	10	5,700	1,820	5,700	1,710	5,400	1,460	
6	12	4,800	1,540	4,800	1,440	4,500	1,220	

Work m	nateria l s	Hardened (1.2344, 55~6		Hardened die steel (1.3343) 63∼70HRC			
Typ mach		a	_	de			
		ap≦0.05Dc (M ae≦0.15Dc	MAX 0.3mm)	ap≦0.05Dc (MAX 0.3mm) ae≦0.15Dc			
Too	Tool dia. Spindle speed						
100		Spind l e speed	Cutting speed	Spindle speed	Cutting speed		
R (mm)	φDc (mm)	Spind l e speed n (min-1)	Cutting speed Vf (mm/min)	Spindle speed n (min-1)	Cutting speed Vf (mm/min)		
R	φDc				Vf (mm/min)		
R (mm) 0.5	φDc (mm) 1	n (min-1) 28,600 19,100	Vf (mm/min)	n (min-1)	V f (mm/min)		
R (mm)	φDc (mm) 1 2 3	n (min ⁻¹) 28,600 19,100 17,000	Vf (mm/min) 1,140	n (min-i) 27,100 17,500 14,900	Vf (mm/min) 810 700 890		
R (mm) 0.5	φDc (mm) 1	n (min-1) 28,600 19,100	Vf (mm/min) 1,140 1,150	n (min-1) 27,100 17,500	Vf (mm/min) 810 700		
R (mm) 0.5 1 1.5	φDc (mm) 1 2 3	n (min ⁻¹) 28,600 19,100 17,000	Vf (mm/min) 1,140 1,150 1,360	n (min-i) 27,100 17,500 14,900	Vf (mm/min) 810 700 890		
R (mm) 0.5 1 1.5	φDc (mm) 1 2 3 4 5	n (min ⁻¹) 28,600 19,100 17,000 12,700	Vf (mm/min) 1,140 1,150 1,360 1,270	n (min-i) 27,100 17,500 14,900 11,100	Vf (mm/min) 810 700 890 890		
R (mm) 0.5 1 1.5 2 2.5 3	φDc (mm) 1 2 3 4 5	28,600 19,100 17,000 12,700 10,200	Vf (mm/min) 1,140 1,150 1,360 1,270 1,220	n (min ⁻¹) 27,100 17,500 14,900 11,100 8,900	Vf (mm/min) 810 700 890 890 890		
R (mm) 0.5 1 1.5 2 2.5 3	φDc (mm) 1 2 3 4 5	28,600 19,100 17,000 12,700 10,200 8,500	Vf (mm/min) 1,140 1,150 1,360 1,270 1,220 1,280	n (min-i) 27,100 17,500 14,900 11,100 8,900 7,400	Vf (mm/min) 810 700 890 890 890 890		

- 1. Above cutting conditions are for general guidance. In case of inclined angle 15° or more, reduce 70% of the above data.
- 2. The figures to be adjusted according to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.

Hard-One Ball

Recommended cutting conditions for SFSB type

■ for finishing

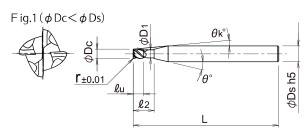
Work m	nateria l s	Carbor (1.0540, ~25	1.0535)	Hardened (1.2344, 1.2379 ∼45		Hardened die steel (1.2344, 1.2379) 42∼52HRC		
	Type of achining ap ≤ 0.05Dc ae ≤ 0.02Dc		ap≦0		ae ap ≤ 0.05Dc			
		de≦U.	0200	a e ≦0	.0200	ae≦u.	ie≦0.02Dc	
	l dia.	Spindle speed	Cutting speed	Spind l e speed	Cutting speed	Spind l e speed	Cutting speed	
R (mm)	φDc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	
0.5	1	38,200	3,440	38,200	3,440	35,000	2,450	
1	2	27,100	3,250	27,100	3,250	25,500	2,550	
1.5	3	21,200	3,390	21,200	3,180	20,200	2,630	
2	4	15,900	3,340	15,900	3,180	15,100	2,270	
2.5	5	12,700	2,670	12,700	2,540	12,100	2,420	
3	6	10,600	2,860	10,600	2,650	10,100	2,530	
4	8	8,000	2,560	8,000	2,400	7,600	2,280	
		(100	2 270			6,000	1,920	
<u>5</u>	10 12	6,400 5,300	2,370 1,960	6,400 2,240 5,300 1,860		5,000	1,600	

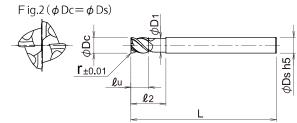
Work m	nateria l s	Hardened (1.2344, 55~6	1.2379)	Hardened die steel (1.3343) 63∼70HRC			
Typ/ mach		ap≦0. ae≦0.	e 05Dc 02Dc	ap ≤ 0.03Dc ae ≤ 0.02Dc			
Tool	l dia.	Spindle speed	Cutting speed	Spindle speed	Cutting speed		
R (mm)	φDc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)		
0.5	1	31,800	1,590	30,200	1,210		
1	2	22,300	2,010	19,100	1,530		
1.5	3	19,100	2,290	15,900	1,910		
2	4	14,300	2,150	11,900	1,790		
2.5	5	11,500	2,070	9,500	1,710		
3	6	9,500	1,900	8,000	1,600		
4	8	7,200	1,800	6,000	1,200		
5	10	5,700	1,710	4,800	1,200		
6	12	4,800	1,440	l 4,000	1,000		

- 1. Above cutting conditions are for general guidance. In case of inclined angle 15° or more, reduce 70% of the above data.
- 2. The figures to be adjusted according to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.

Hard-One Radius SFSR type

●For high hardened die steel up to 70HRC





						Dime	nsions (r	nm)				
Cat. No.	Stock	Grade	r	φDc	lи	Q 2	L	φD1	φDs	θ	θk	Fig.
SFSR4020S04-R05	•		0.5	2	2	4	40	1.9	4	20°	9.1°	1
SFSR4020S06-R05	•		0.5	2	2	4	40	1.9	6	20°	12.6°	1
SFSR4030S04-R08	•		0.8	3	3	6	40	2.9	4	20°	4.4°	1
SFSR4030S06-R08	•		0.8	3	3	6	40	2.9	6	20°	9.2°	1
SFSR4040S04-R10	•		1.0	4	4	8	40	3.8	4	-	-	2
SFSR4040S06-R10	•		1.0	4	4	8	40	3.8	6	20°	5.9°	1
SFSR4050S06-R12	•		1.2	5	5	10	50	4.8	6	20°	2.9°	1
SFSR4060S06-R10	•	DH110	1.0	6	6	12	50	5.8	6	-	-	2
SFSR4060S06-R15	•		1.5	6	6	12	50	5.8	6	-	-	2
SFSR4080S08-R10	•		1.0	8	8	16	60	7.8	8	-	-	2
SFSR4080S08-R20	•		2.0	8	8	16	60	7.8	8	-	-	2
SFSR4100S10-R20	•		2.0	10	10	20	60	9.8	10	-	-	2
SFSR4100S10-R30	•		3.0	10	10	20	60	9.8	10	-	_	2
SFSR4120S12-R20	•		2.0	12	12	24	60	11.8	12	-	-	2
SFSR4120S12-R30	•		3.0	12	12	24	60	11.8	12	_	_	2

^{●:}Standard stock items。

Recommended cutting conditions for SFSR type (face milling)

■ for roughing

Work materials	Carbo (1.0540 ~25		Hardenec (1.2344, 1.237 ∼45		Stainless steel (1.4350)		
Type of machining	ap ≦ 0.3mm (ae ≤ 0.33Dc	<u>ae</u> φ2(±0.15mm)	ap ≤ 0.3mm ae ≤ 0.33Dc	<u>ae</u> η ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ap ≤ 0.15 mm ae ≤ 0.33 Dc		
Tool dia.	Spind l e speed	Feed speed	Spind l e speed	Feed speed	Spind l e speed	Feed speed	
arphiDc (mm)	n (min-1)	Vf (mm/min)	n (min- ⁱ)	Vf (mm/min)	n (min-1)	Vf (mm/min)	
2	24,000	7,000	24,000	7,000	25,000	2,500	
3	17,000	7,000	17,000	7,000	17,000	3,000	
4	13,000	8,000	13,000	8,000	13,000	3,500	
5	10,000	9,000	10,000	9,000	10,500	4,000	
6	8,500	10,000	8,500	10,000	8,600	4,200	
8	6,500	10,000	6,500	10,000	6,500	4,200	
10	5,200	10,000	5,200	10,000	4,500	4,200	
12	4,300	10,000	4,300	10,000	3,000	4,200	

Work materials	Hardened (1.2344, 42~5	d die steel 1.2379) 22HRC	(1.2344,	d die stee <mark>l</mark> 1.2379) 52HRC	High speed tool steel (1.3343) 63∼70HRC		
Type of machining	ap≦0. ae≦0.3		ap≦0 ae≦0.	_ae	ae ap≤0.15 mm ae≤0.33Dc		
Tool dia.	Spind l e speed	Feed speed	Spind l e speed	Feed speed	Spind l e speed	Feed speed	
φDc (mm)	n (min-i)	V f (mm/min)	n (min-1)	V f (mm/min)	n (min-1)	V f (mm/min)	
2	16,000	2,300	9,000	1,700	3,000	600	
3	12,500	3,000	7,300	1,900	3,000	750	
4	11,000	3,500	6,500	2,100	3,000	1,000	
5	9,500	4,800	6,200	2,300	3,000	1,200	
6	8,000	5,500	6,000	2,500	3,200	1,400	
8	6,000	6,000	4,300	2,300	2,500	1,500	
10	4,800	6,000	3,300	2,500	2,000	1,600	
12	4,000	7,500	2,500	2,500	1,500	1,700	

■Attention to

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Recommend using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.

Recommended cutting conditions for SFSR type (face milling)

■for finishing

Work materials	Carbon (1.0540,1 ~250	.0535)	Hardened (1.2344, 1.237 ∼45		Stajnless steel (1.4350)		
Type of machining	ap ≤ 0.15 mm ae ≤ 0.1Dc		ap ≦ 0 ae ≤ 0	ae ag	$ap \leq 0.15 \text{ mm}$ $ae \leq 0.1Dc$		
Tool dia. φDc (mm)	Spindle speed n (min-1)	Feed speed Vf (mm/min)	Spindle speed n (min-1)	Feed speed Vf (mm/min)	Spindle speed n (min-1)	Feed speed Vf (mm/min)	
2	30,000	2,000	30,000	2,000	30,000	2,000	
3	20,000	2,000	20,000	2,000	20,000	2,000	
4	15,000	2,000	15,000	2,000	15,000	2,000	
5	12,000	2,000	12,000	2,000	12,000	2,000	
6	10,000	2,000	10,000	2,000	10,000	2,000	
8	7,500	2,000	7,500	2,000	7,500	2,000	
10	6,000	1,900	6,000	1,900	5,000	1,500	
12	5,000	1,800	5,000	1,800	3,000	1,000	

Work materials	(1.2344,	d die steel 1.2379) 22HRC	Hardened (1.2344, 55~6		High speed tool steel (1.3343) 63∼70HRC		
Type of machining	ap≦0 ae≤0		ap≤0.1 ae≤0.1		ap ≤ 0.05 mm ae ≤ 0.1Dc		
Too l dia.	Spindle speed			Feed speed	Spind l e speed	Feed speed	
φ Dc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	
2	20,000	1,300	13,000	900	9,000	400	
3	14,000	1,100	9,000	700	6,000	350	
4	11,000	950	7,000	550	4,700	300	
5	9,500	900	5,700	550	3,800	300	
6	8,000 800		4,700	450	3,200	250	
8	6,000	700	3,500	400	2,500	250	
10	5,000	650	2,800	350	2,000	200	
12	4,000	650	2,400	350	1,600	200	

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Recommend using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.

Recommended cutting conditions for SFSR type (shoulder milling)

■for roughing

Work materials	Carbon (1.0540, ' ~25	1.0535)	Hardened (1.2344, 1.237 ∼45	l die stee l 9, 1.2311, P20) 5HRC	Stainless steel (1.4350)		
Type of machining	ae ap ≤ 0.6Dc ae ≤ 0.08Dc		ae.	$\begin{array}{c} \alpha \\ \alpha \\ \end{array} \text{ ap } \leq 0.6 \text{Dc} \\ \text{ae } \leq 0.08 \text{Dc} \end{array}$	ae ap ≦ 0.6Dc ae ≤ 0.04Dc		
Tool dia. φDc(mm)	Spindle speed n (min-1)	Feed speed Vf (mm/min)	Spindle speed n (min-1)	Feed speed Vf (mm/min)	Spindle speed N (min-1)	Feed speed V f (mm/min)	
2	24.000	950	24,000	950	3,200	2,500	
3	24,000	1,300	24,000	1,300	2,700	2,200	
4	18,000	1,800	18,000	1,800	2,300	2,000	
5	15,000	2,000	15,000	2,000	2,000	1,900	
6	12,000 2,200		12,000	2,200	1,800	1,800	
8	10,000	2,200	10,000 2,200		1,300	1,300	
10	8,000	2,200	8,000	2,200	1,000	1,000	
12	6,500	1,900	6,500	1,900	800	800	

Work materials	Hardened die steel (1.2344, 1.2379) 42∼52HRC		Hardened die steel (1.2344, 1.2379) 55∼62HRC		High speed tool steel (1.3343) 63∼70HRC	
Type of machining	$ \frac{de}{\sigma} \text{ap} \leq 0.6Dc \\ \frac{de}{d\sigma} \text{ae} \leq 0.08Dc $		ae $ap \le 0.6Dc$ $ae \le 0.08Dc$		$\begin{array}{c} ae \\ c \\ c \\ c \\ \end{array}$ $\begin{array}{c} ap \leq 0.6Dc \\ ae \leq 0.08Dc \\ \end{array}$	
Tool dia.	Spindle speed Feed speed		Spindle speed	Feed speed	Spindle speed	Feed speed
arphiDc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)
2	13,000	1,000	12,000	1,000	6,400	600
3	13,000	1,300	11,000	1,200	6,000	600
4	11,000	1,500	9,000	1,200	5,100	550
5	9,000	1,600	7,200	1,200	4,200	550
6	7,500	1,800	6,000	1,200	3,500	650
8	5,500	2,200	4,500	1,200	2,500	650
10	4,500	2,500	3,600	1,400	2,000	600
	3,800	3,000	3,000	1,400	1,700	600

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.

Recommended cutting conditions for SFSR type (shoulder milling)

■for finishing

Work materials	Carbon steel (1.0540,1.0535) ∼250HB		Hardened die steel (1.2344, 1.2379, 1.2311, P20) ∼45HRC		Stainless steel (1.4350)	
Type of machining	ap ≤ 0.3 mm ae ≤ 0.1 mm		ae ≤ 0.3 mm		ae ap ≤ 0.3 mm ae ≤ 0.1 mm	
Too l dia.	Spindle speed	Feed speed	Spind l e speed	Feed speed	Spind l e speed	Feed speed
ϕ Dc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-i)	Vf (mm/min)
2	40,000	4,500	40,000	4,500	40,000	7,500
3	29,000	4,000	29,000	4,000	28,000	5,500
4	22,000	4,000	22,000	4,000	21,000	4,500
5	18,000	4,000	18,000	4,000	17,000	4,000
6	15,000	3,700	15,000	3,700	14,000	3,500
8	11,000	2,800	11,000	2,800	11,000	3,000
10	8,900	2,600	8,900	2,600	9,000	2,600
12	7,400	2,300	7,400	2,300	7,500	2,200

Work materials	Hardened die steel (1.2344, 1.2379) 42∼52HRC		Hardened die steel (1.2344, 1.2379) 55∼62HRC		High speed tool steel (1.3343) 63∼70HRC	
Type of machining	ae ap ≦ 0.3 mm ae ≤ 0.1 mm		ap ≤ 0.2 mm ap ≤ 0.1 mm		ae ap ≤ 0.1 mm ae ≤ 0.1 mm	
Tool dia.	Spind l e speed	Feed speed	Spindle speed	Feed speed	Spindle speed	Feed speed
ϕ Dc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)
2	40,000	2,500	30,000	2,000	23,000	550
3	26,500	2,000	20,000	1,500	15,000	450
4	20,000	1,800	15,000	1,200	12,000	400
5	16,000	1,500	12,000	1,100	9,500	380
6	13,500	1,300	10,000	900	8,000	350
8	10,000	1,000	7,500	700	6,000	280
10	8,000 6,500	800 700	6,000 5,000	600 500	5,000	280 280

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.

Recommended cutting conditions for SFSR type (slotting)

Work materials	Carbon stee l (1.0540,1.0535) ∼250HB		Hardened die steel (1.2344, 1.2379, 1.2311, P20) ∼45HRC		Stainless steel (1.4350)	
Type of machining	ae	$\begin{array}{c} \Omega \\ \Omega \\ \text{ev} \end{array} \begin{array}{c} \text{ap} \leq 0.3 \text{Dc} \\ \text{ae} = \text{Dc} \end{array}$	ae $ap \le 0.3Dc$ $ae = Dc$		ap≦0.25Dc ae=Dc	
Too l dia.	Spindle speed	Feed speed	Spind l e speed	Feed speed	Spindle speed	Feed speed
ϕ Dc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)
2	11,000	650	11,000	650	2,500	190
3	9,500	750	9,500	750	2,300	180
4	8,500	800	8,500	800	2,000	170
5	7,600	1,000	7,600	1,000	1,800	160
5						
6	6,600	1,100	6,600	1,100	1,500	150
6 8	6,600 5,000	1,100 1,200	6,600 5,000	1,100 1,200	1,100	130
6	6,600	1,100	6,600	1,100		

Work materials	Hardened die steel (1.2344, 1.2379) 42∼52HRC		Hardened die steel (1.2344, 1.2379) 55∼62HRC		High speed tool steel (1.3343) 63∼70HRC	
Type of machining	ap≤0.3Dc ae=Dc		ae ap≦0.3Dc ae=Dc		ap≦0.3Dc ae=Dc	
Too l dia.	Spind l e speed	Feed speed	Spindle speed	Feed speed	Spind l e speed	Feed speed
φ Dc (mm)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)
2	9,000	400	5,500	240	5,500	230
3	8,000	500	5,000	300	4,800	270
4	7,500	550	4,200	350	4,000	320
5	6,800	650	3,900	400	3,800	400
6	5,800	700	3,500	500	3,200	480
8	4,300	750	2,700	550	2,300	450
10	3,400	900	2,200	620	1,800	470
12	2,800	1,000	1,800	700	1,500	530

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.
- 7. Recommend to shorten overhung length (2Dc-3Dc).
- 8. Recommended ramping angle is within 45°.

Recommended cutting conditions for SFSR type (plunging)

Work materials	Carbon steel (1.0540,1.0535) ∼250HB		Hardened die steel (1.2344, 1.2379, 1.2311, P20) ∼45HRC		Stainless steel (1.4350)	
Type of machining	ap ap ≤ 0.2Dc (MAX 1.5mm) ae = Dc		ap ≤ 0.2Dc (MAX 1.5mm) ae = Dc		ap ≤ 0.2Dc (MAX 1.0mm) ae = Dc	
Too l dia.	Spind l e speed	Feed speed	Spindle speed	Feed speed	Spind l e speed	Feed speed
φ Dc (mm)	n (min-ı)	Vf (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	Vf (mm/min)
2	11,000	250	11,000	250	8,000	90
3	8,500	320	8,500	320	7,000	100
4	8,000	350	8,000	350	6,000	100
5	6,500	360	6,500	360	5,200	120
6	5,500	350	5,500	350	4,500	120
8	4,200	320	4,200	320	3,200	110
10	3,000	280	3,000	280	2,000	100
12	2,500	250	2,500	250	1,500	90

Work materials	Hardened die steel (1.2344, 1.2379) 42∼52HRC		Hardened die steel (1.2344, 1.2379) 55∼62HRC		High speed tool steel (1.3343) 63∼70HRC	
Type of machining	ap ≤ 0.2Dc (MAX 1.0mm) ae = Dc		ae ap ≤ 0.2Dc (MAX 1.0mm) ae = Dc		ap ≤ 0.1Dc (MAX 0.5mm) ae = Dc	
Too <mark>l</mark> dia.	Spindle speed	Feed speed	Spindle speed	Feed speed	Spindle speed	Feed speed
φ Dc (mm)	n (min-1)	V f (mm/min)	n (min-1)	Vf (mm/min)	n (min-1)	V f (mm/min)
2	8,000	150	7,000	180	3,000	60
3	6,500	200	5,500	200	3,000	75
4	5,500	220	4,500	230	3,000	100
5	4,500	240	4,000	250	3,000	120
6	3,700	280	3,500	250	3,200	140
8	2,800	250	2,700	230	2,500	150
10	2,200	250	2,200	200	2,000	160
12	1,800	230	2,000	180	1,500	170

- 1. Above cutting conditions are for general guidance.
- 2. The figures to be adjusted accroding to machining shape, overhung length, purpose and rigidity of machine and work clamping.
- 3. If machine does not have enough spindle speed, reduce the feed speed to the same ratio.
- 4. Recommend to use down cutting with air blow or mist coolant.
- 5. Using coolant on stainless steel.
- 6. It is important for grasping the shank to defend and keep proper grasping length in case of using shrink fit holder.
- 7. In case of helical interpolation, set "Max. helical interpolation depth per tool path revolution" to above Max. ap.

HEADQUARTER

DIJET Industrial Co.Ltd.

1-1-18, Kami-Higashi, Hirano-ku, Osaka 547-0002, Japan PHONE +81-6-6791-6781 FAX +81-6-6793-1221 MAIN OFFICE EUROPE

DIJET GmbH

Immermannstraße 9
40210 Düsseldorf, Germany
PHONE +49-211-50088820
FAX +49-211-50088823
www.dijet.de